Chaotic behavior in a class of delay difference equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Periodicity in a Class of Systems of Delay Difference Equations

We study a system of delay difference equations modeling four-dimensional discrete-time delayed neural networks with no internal decay. Such a discrete-time system can be regarded as the discrete analog of a differential equation with piecewise constant argument. By using semicycle analysis method, it is shown that every bounded solution of this discrete-time system is eventually periodic. The ...

متن کامل

On the Oscillatory Behavior for a Certain Class of Third Order Nonlinear Delay Difference Equations

By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria for a certain class of third order nonlinear delay difference equations. Our results extend and improve some previously obtained ones. An example is worked out to demonstrate the validity of the proposed results.

متن کامل

Asymptotic behavior of a system of two difference equations of exponential form

In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...

متن کامل

Global Attractivity in Nonlinear Delay Difference Equations

We obtain a set of sufficient conditions under which all positive solutions of the nonlinear delay difference equation x„+l = x„f(xn_k), n = 0,1,2,..., are attracted to the positive equilibrium of the equation. Our result applies, for example, to the delay logistic model JVI+i = aN¡/(\ +ßNt_k) and to the delay difference equation xn+i = x„er^~x"-k'1 .

متن کامل

Periodicity in a System of Differential Equations with Finite Delay

The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.  

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Difference Equations

سال: 2013

ISSN: 1687-1847

DOI: 10.1186/1687-1847-2013-99