Chaotic behavior in a class of delay difference equations
نویسندگان
چکیده
منابع مشابه
Periodicity in a Class of Systems of Delay Difference Equations
We study a system of delay difference equations modeling four-dimensional discrete-time delayed neural networks with no internal decay. Such a discrete-time system can be regarded as the discrete analog of a differential equation with piecewise constant argument. By using semicycle analysis method, it is shown that every bounded solution of this discrete-time system is eventually periodic. The ...
متن کاملOn the Oscillatory Behavior for a Certain Class of Third Order Nonlinear Delay Difference Equations
By employing the generalized Riccati transformation technique, we will establish some new oscillation criteria for a certain class of third order nonlinear delay difference equations. Our results extend and improve some previously obtained ones. An example is worked out to demonstrate the validity of the proposed results.
متن کاملAsymptotic behavior of a system of two difference equations of exponential form
In this paper, we study the boundedness and persistence of the solutions, the global stability of the unique positive equilibrium point and the rate of convergence of a solution that converges to the equilibrium $E=(bar{x}, bar{y})$ of the system of two difference equations of exponential form: begin{equation*} x_{n+1}=dfrac{a+e^{-(bx_n+cy_n)}}{d+bx_n+cy_n}, y_{n+1}=dfrac{a+e^{-(by_n+cx_n)}}{d+...
متن کاملGlobal Attractivity in Nonlinear Delay Difference Equations
We obtain a set of sufficient conditions under which all positive solutions of the nonlinear delay difference equation x„+l = x„f(xn_k), n = 0,1,2,..., are attracted to the positive equilibrium of the equation. Our result applies, for example, to the delay logistic model JVI+i = aN¡/(\ +ßNt_k) and to the delay difference equation xn+i = x„er^~x"-k'1 .
متن کاملPeriodicity in a System of Differential Equations with Finite Delay
The existence and uniqueness of a periodic solution of the system of differential equations d dt x(t) = A(t)x(t − ) are proved. In particular the Krasnoselskii’s fixed point theorem and the contraction mapping principle are used in the analysis. In addition, the notion of fundamental matrix solution coupled with Floquet theory is also employed.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Difference Equations
سال: 2013
ISSN: 1687-1847
DOI: 10.1186/1687-1847-2013-99